Cancer remains a health-related concern globally. The application of light to be used as therapeuticagent including cancer has been used for several thousand years. Photodynamic therapy (PDT) is a modern, non-invasive therapeutic modality for the treatment of various cancers and infections by bacteria, fungi, and viruses. Mitochondria are subcellular, double-membrane organelles that have a role in cancer and anticancer therapy. Mitochondria play a key role in regulation of apoptosis and these organelles produce most of the cell's energy which enhance its targeting objective. The role of mitochondria in anticancer approach is achieved by targeting its metabolism (glycolysis and TCA cycle) and apoptotic and ROS homeostasis. The role of mitochondria-targeted cancer therapies in photodynamic therapy have proven to be more effective than other similar non-targeting techniques. Particularly in PDT, mitochondria-targeting sensitizers are important as they have a crucial role in overcoming the hypoxia factor, resulting in high efficacy. IR-730 and IR-Pyr are the indocyine derivatives photosensitizers that play a crucial role in targeting mitochondria because of their better photostability during laser irradiation. Clinical and pre-clinical trials are going on this approach to target different solid tumors using mitochondrial targeted photodynamic therapy.
Keywords: Cancer; Mitochondria; Photodynamic therapy.
Copyright © 2022 Elsevier B.V. All rights reserved.