P-FLUX: A phosphorus budget dataset spanning diverse agricultural production systems in the United States and Canada

J Environ Qual. 2022 May;51(3):451-461. doi: 10.1002/jeq2.20351. Epub 2022 Apr 25.

Abstract

Quantifying spatial and temporal fluxes of phosphorus (P) within and among agricultural production systems is critical for sustaining agricultural production while minimizing environmental impacts. To better understand P fluxes in agricultural landscapes, P-FLUX, a detailed and harmonized dataset of P inputs, outputs, and budgets, as well as estimated uncertainties for each P flux and budget, was developed. Data were collected from 24 research sites and 61 production systems through the Long-term Agroecosystem Research (LTAR) network and partner organizations spanning 22 U.S. states and 2 Canadian provinces. The objectives of this paper are to (a) present and provide a description of the P-FLUX dataset, (b) provide summary analyses of the agricultural production systems included in the dataset and the variability in P inputs and outputs across systems, and (c) provide details for accessing the dataset, dataset limitations, and an example of future use. P-FLUX includes information on select site characteristics (area, soil series), crop rotation, P inputs (P application rate, source, timing, placement, P in irrigation water, atmospheric deposition), P outputs (crop removal, hydrologic losses), P budgets (agronomic budget, overall budget), uncertainties associated with each flux and budget, and data sources. Phosphorus fluxes and budgets vary across agricultural production systems and are useful resources to improve P use efficiency and develop management strategies to mitigate environmental impacts of agricultural systems. P-FLUX is available for download through the USDA Ag Data Commons (https://doi.org/10.15482/USDA.ADC/1523365).

MeSH terms

  • Agriculture*
  • Canada
  • Phosphorus* / analysis
  • Soil
  • United States
  • Water

Substances

  • Soil
  • Water
  • Phosphorus