The plant IQD gene family is responsive to a variety of stresses. In this study, we studied the structural features and functions of the gene BrIQD35 in Chinese cabbage, a member of the IQD gene family. BrIQD35 was cloned and shown to contain an IQ motif. Transient expression of BrIQD35 indicated that it was localized on the plasma membrane and was significantly upregulated under drought and salt stress in Chinese cabbage. To further identify the function of BrIQD35, it was heterologously overexpressed in Nicotiana benthamiana. Although there was no significant difference between BrIQD35-overexpressed and wild-type (WT) plants under salt stress, WT N. benthamiana showed more wilting than the BrIQD35-overexpressed plants under drought stress. Since the IQ motif has been annotated as a CaM binding site, yeast two-hybrid assays were used to explore the interaction between BrIQD35 and CaM. The results indicated that BrIQD35 interacts weakly with CaMb, but not with CaMa, suggesting that BrIQD35 may function through the Ca2+ -CaMb pathway. The findings reveal a novel gene involved in drought tolerance, which is important for plant breeding and quality improvement for Chinese cabbage.
Keywords: BrIQD35; Chinese cabbage; Drought stress; Protein interaction; Tobacco.
© 2022 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.