This research focused on novel molecular mechanisms underlying microRNA (miR)-182-5p in ulcerative colitis (UC). Colon tissues were obtained from UC patients, and dextrose sodium sulfate (DSS)-induced mouse and interleukin-1β (IL-1β)-induced Caco-2 cell models were generated. Then, miR-182-5p, SMARCA5, and the Wnt/β-catenin signaling pathway were altered in IL-1β-stimulated Caco-2 cells and DSS-treated mice to assess their function. MiR-182-5p and SMARCA5 were upregulated and DNMT3A, β-catenin, and Cyclin D1 were downregulated in UC patients, IL-1β-stimulated Caco-2 cells, and DSS-treated mice. Mechanistically, miR-182-5p targeted DNMT3A to upregulate SMARCA5, thus blocking the Wnt/β-catenin signaling pathway. Moreover, SMARCA5 silencing or Wnt/β-catenin signaling pathway activation repressed apoptosis and augmented proliferation and epithelial barrier function of IL-1β-stimulated Caco-2 cells. SMARCA5 silencing annulled the impacts of miR-182-5p overexpression on IL-1β-stimulated Caco-2 cells. SMARCA5 silencing or miR-182-5p inhibition ameliorated intestinal barrier dysfunction in DSS-treated mice. Collectively, miR-182-5p aggravates UC by inactivating the Wnt/β-catenin signaling pathway through DNMT3A-mediated SMARCA5 methylation.
Keywords: Apoptosis; DNA methyltransferase 3A; Epithelial barrier function; Intestinal barrier dysfunction; Methylation; MicroRNA-182-5p; Proliferation; SMARCA5; Ulcerative colitis; Wnt/β-catenin signaling pathway.
Copyright © 2022. Published by Elsevier Inc.