This study determined the energy requirement for maintenance of purebred Nellore cattle and its crossbreds using data from a comparative slaughter trial in which animals were raised under the same plane of nutrition from birth through slaughter and born from a single commercial Nellore cowherd. A total of 79 castrated steers (361 ± 54 kg initial body weight [BW]) were used in a completely randomized design by age (22 mo ± 23 d of age) with four genetic groups (GG): Nellore (NL), ½ Angus × ½ Nellore (AN), ½ Canchim × ½ Nellore (CN), and ½ Simmental × ½ Nellore (SN). The experimental design provided ranges in metabolizable energy (ME) intake (MEI), BW, and average daily gain needed to develop regression equations to predict net energy for maintenance (NEm) requirements. Four steers of each GG were slaughtered to determine the initial body composition. The remaining 63 steers were assigned to different nutritional treatments (NT) by GG; ad libitum or limit-fed treatments (receiving 70% of the daily feed of the ad libitum treatment of the same GG). Full BW was recorded at birth, weaning, 12, 18, and 22 mo. In the feedlot, steers were fed for 101 d a diet containing (DM basis) 60% corn silage and 40% concentrate. No difference in age at weaning (P = 0.534) and slaughter (P = 0.179 and P = 0.896, for GG and NT, respectively) were observed. AN steers were heavier at weaning weight, yearling weight and had higher empty BW (EBW; P = 0.007, P = 0.014, and P < 0.001, respectively) in comparison to NL, CN, and SN. There were no interactions (P > 0.05) between GG and NT for any variable evaluated. When fed ad libitum, AN steers had higher daily MEI (Mcal/d; P < 0.001) in comparison to NL, CN, and SN. On a constant age basis, differences were observed on body composition (P < 0.05) between GG. The slope (P = 0.600) and intercept (P = 0.702) of the regression of log heat production on MEI were similar among GG. Evaluating at the same age and the same frame size, there were no differences in NEm requirement between Nellore and AN (P = 0.528), CN (P = 0.671), and SN (P = 0.706). The combined data indicated a NEm requirement of 86.8 kcal/d/kg0.75 EBW and a ME required for maintenance requirement had a common value of 137.53 kcal/d/kg0.75 EBW. The efficiency of energy utilization for maintenance and the efficiency of energy utilization for growth values were similar among GG (P > 0.05 and P > 0.05, respectively) and were on average 63.2% and 26.0%, respectively. However, although not statistically different, the NEm values from NL showed a decrease in NEm of 5.76% compared with AN steers.
Keywords: Bos indicus; comparative slaughter; efficiency; growth curve; net energy; weaning weight.
Although several studies have shown that the maintenance energy expenditures vary with breeds, there has been no available data comparing the energy requirements of different genetic groups of beef cattle determined during the finishing phase when raised under the same plane of nutrition from birth through slaughter born from a single cowherd. This study evaluated the influence of purebred Nellore and its crosses with Simmental, Angus, and Canchim slaughtered at the same age and body composition on their net energy requirement for maintenance (NEm). Animals were reared in tropical conditions, receiving only free-choice minerals from birth through the beginning of the feedlot phase, potentially altering the intake, carcass composition, mature weight, and consequently, affecting the energy requirement for maintenance during the finishing period. The pooled data analysis for Nellore and its crosses resulted in common NEm requirement of 86.9 kcal/d/kg0.75 of empty body weight (EBW). However, although not statistically different, the NEm values from Nellore (NL) and Angus × Nellore (AN) were 85.5 and 90.8 kcal/d/kg0.75 EBW, respectively, showing a decrease in NEm of 5.76% for NL in comparison with AN steers.
© The Author(s) 2022. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.