Systematic Evaluation of Ion Diffusion and Water Exchange

J Chem Theory Comput. 2022 May 10;18(5):3017-3026. doi: 10.1021/acs.jctc.1c01189. Epub 2022 Apr 14.

Abstract

As a fundamental property of all fluids, diffusion plays myriad roles in both science and our daily lives. Diffusive properties of many liquids including water have been extensively studied both experimentally and theoretically, while for transition metal ions, there exist significant experimental data that have not been extensively studied theoretically. Hence, high-confidence predictions for challenging systems like radioactive ions that are biohazardous cannot be reliably generated. In this work, a workflow named ISAIAH (Ion Simulation using AMBER for dIffusion Action when Hydrated) was designed to accurately simulate the diffusion coefficients of 15 monoatomic ions with charges varying from -1 to +3 in four water models. As the results indicate, good agreement with experimental values was achieved, leading us to select 239Pu4+ (for which no experimental data are available) as a candidate ion to make a theoretical prediction of its diffusion coefficient in water. Among all the force field parameter sets, the ones parametrized using an augmented 12-6-4 Lennard-Jones (LJ) potential showed lower average unsigned errors (AUE) for ions of various radii and electron configurations relative to some 12-6 LJ parameters. This observation agrees well with the fact that diffusion is affected by both the hydration free energy (HFE) and the ion-oxygen distance (IOD) between solute and solvent molecules, both of which are handled well by the 12-6-4 model.

MeSH terms

  • Entropy
  • Ions
  • Solvents
  • Thermodynamics
  • Water*

Substances

  • Ions
  • Solvents
  • Water