Water Sorption in Glassy Polyvinylpyrrolidone-Based Polymers

Membranes (Basel). 2022 Apr 17;12(4):434. doi: 10.3390/membranes12040434.

Abstract

Polyvinylpyrrolidone (PVP)-based polymers are excellent stabilizers for food supplements and pharmaceutical ingredients. However, they are highly hygroscopic. This study measured and modeled the water-sorption isotherms and water-sorption kinetics in thin PVP and PVP-co-vinyl acetate (PVPVA) films. The water sorption was measured at 25 °C from 0 to 0.9 RH, which comprised glassy and rubbery states of the polymer-water system. The sorption behavior of glassy polymers differs from that in the rubbery state. The perturbed-chain statistical associating fluid theory (PC-SAFT) accurately describes the water-sorption isotherms for rubbery polymers, whereas it was combined with the non-equilibrium thermodynamics of glassy polymers (NET-GP) approach to describe the water-sorption in the glassy polymers. Combined NET-GP and PC-SAFT modeling showed excellent agreement with the experimental data. Furthermore, the transitions between the PC-SAFT modeling with and without NET-GP were in reasonable agreement with the glass transition of the polymer-water systems. Furthermore, we obtained Fickian water diffusion coefficients in PVP and in PVPVA from the measured water-sorption kinetics over a broad range of humidities. Maxwell-Stefan and Fickian water diffusion coefficients yielded a non-monotonous water concentration dependency that could be described using the free-volume theory combined with PC-SAFT and NET-GP for calculating the free volume.

Keywords: NET-GP; PC-SAFT; free volume; water sorption isotherms; water sorption kinetics.