Chemical-induced gene expression ranking and its application to pancreatic cancer drug repurposing

Patterns (N Y). 2022 Feb 4;3(4):100441. doi: 10.1016/j.patter.2022.100441. eCollection 2022 Apr 8.

Abstract

Chemical-induced gene expression profiles provide critical information of chemicals in a biological system, thus offering new opportunities for drug discovery. Despite their success, large-scale analysis leveraging gene expressions is limited by time and cost. Although several methods for predicting gene expressions were proposed, they only focused on imputation and classification settings, which have limited applications to real-world scenarios of drug discovery. Therefore, a chemical-induced gene expression ranking (CIGER) framework is proposed to target a more realistic but more challenging setting in which overall rankings in gene expression profiles induced by de novo chemicals are predicted. The experimental results show that CIGER significantly outperforms existing methods in both ranking and classification metrics. Furthermore, a drug screening pipeline based on CIGER is proposed to identify potential treatments of drug-resistant pancreatic cancer. Our predictions have been validated by experiments, thereby showing the effectiveness of CIGER for phenotypic compound screening of precision medicine.

Keywords: attention; cancer therapy; drug repurposing; gene expression; graph neural network; learning-to-rank; machine learning; pancreatic cancer; phenotype screening; precision medicine.