Background: Factor VIII (FVIII) binding to endogenous von Willebrand factor (VWF) has constrained half-life extension of recombinant FVIII (rFVIII) products for hemophilia A. Efanesoctocog alfa (rFVIIIFc-VWF-XTEN; BIVV001) is a novel fusion protein designed to decouple FVIII from VWF in circulation and maximize half-life prolongation by XTEN® polypeptides and Fc fusion. FVIII, VWF, and platelets interact to achieve normal hemostasis. Thus, bioengineered FVIII replacement products, such as efanesoctocog alfa, require comprehensive assessment of their hemostatic potential.
Objectives: We compared functional clot formation and injury-induced platelet accumulation between efanesoctocog alfa and rFVIII.
Patients/methods: The hemostatic potential of efanesoctocog alfa and rFVIII were assessed by measuring their dose-dependent effects on in vitro fibrin generation in hemophilic plasma and in vivo injury-induced platelet accumulation using intravital microscopy and repeat saphenous vein laser-induced injuries in hemophilia A mice.
Results: Equal concentrations of efanesoctocog alfa or rFVIII (up to 1 IU/ml) added to plasma from patients with hemophilia A elicited similar kinetics for dose-dependent fibrin polymerization between factor products. In the presence of tissue plasminogen activator (tPA), clots formed had similar stability between products. Single intravenous doses (50, 100, or 150 IU/kg) of efanesoctocog alfa or rFVIII shortly before repeat saphenous vein laser-induced injuries increased platelet accumulation over time in a dose-dependent manner in hemophilia A mice. Platelet deposition kinetics were similar between products.
Conclusions: Equivalent doses of efanesoctocog alfa and rFVIII had similar efficacy in promoting fibrin clot formation and injury-induced platelet accumulation. The hemostatic potential of efanesoctocog alfa was indistinguishable from that of rFVIII.
Keywords: blood platelets; factor VIII; fibrinogen; hemophilia A; von Willebrand factor.
© 2022 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals LLC on behalf of International Society on Thrombosis and Haemostasis.