Facile synthesis of silver/gold alloy nanoparticles for ultra-sensitive rhodamine B detection

RSC Adv. 2021 Jun 17;11(35):21475-21488. doi: 10.1039/d1ra02576g. eCollection 2021 Jun 15.

Abstract

The synthesis of Ag/Au nanoparticles (NPs) in a controlled manner has been a challenge for a long time. The aim of this report is to present a systematic study on the fabrication, characterization of Ag/Au alloy NP-based surface-enhanced Raman spectroscopy (SERS) substrates. Silver (Ag) and gold (Au) colloidal NPs were prepared by chemical reduction route of the corresponding metal salts by trisodium citrate (TSC). Ag/Au alloy nanoparticles with varying molar fractions are prepared in aqueous solution by the simultaneous reduction of AgNO3 and HAuCl4 by TSC. The composition of Ag and Au in the alloy samples was controlled by tuning the molar ratio of Ag+/Au3+ in the mixture solution. The morphologies of the different products were characterized by TEM, and the size of obtained samples was in the range of 40 to 60 nm. The resulting samples were denoted as AgNPs, AuNPs, Ag3Au, AgAu, and AgAu3 NPs. In order to compare the optical property of the Ag/Au alloy and Ag/Au mixture, we mixed the pure Ag and Au NPs with different ratios to obtain the aggregated nanoparticles. Ag/Au alloy NPs were demonstrated as an ultrasensitive SERS substrate for the detection of rhodamine B (RhB) molecules. The concentration of RhB ranged from 10-11 to 10-5 M. The effect of the Au content on the optical and SERS properties of the Ag/Au alloys was studied. The obtained results show that the Au content in the Ag/Au alloys play an important role in the physical properties of Ag/Au alloy NPs. The SERS spectra of RhB from the as-prepared Ag/Au alloy NP substrates indicated the superior enhancement with high reproducibility and sensitivity compared to those of Ag or Au samples. Interestingly, the highest SERS activity was achieved for the Ag3Au sample with an enhancement factor larger than 1010 for 10-11 M RhB and a limit of detection (LOD) at 10-11 M, as well as good long-term stability after storage for 1 year. As far as we know, this is the highest sensitivity record of RhB by SERS detection. Furthermore, the composition-dependent SERS activity was explained in detail. These advantages demonstrated the potential for growing Ag/Au alloy NP-based SERS substrates in food safety and bioanalysis.