Background: Transvenous lead extraction (TLE) remains a high-risk procedure.
Objective: The purpose of this study was to develop a machine learning (ML)-based risk stratification system to predict the risk of major adverse events (MAEs) after TLE. A MAE was defined as procedure-related major complication and procedure-related death.
Methods: We designed and evaluated an ML-based risk stratification system trained using the European Lead Extraction ConTRolled (ELECTRa) registry to predict the risk of MAEs in 3555 patients undergoing TLE and tested this on an independent registry of 1171 patients. ML models were developed, including a self-normalizing neural network (SNN), stepwise logistic regression model ("stepwise model"), support vector machines, and random forest model. These were compared with the ELECTRa Registry Outcome Score (EROS) for MAEs.
Results: There were 53 MAEs (1.7%) in the training cohort and 24 (2.4%) in the test cohort. Thirty-two clinically important features were used to train the models. ML techniques were similar to EROS by balanced accuracy (stepwise model: 0.74 vs EROS: 0.70) and superior by area under the curve (support vector machines: 0.764 vs EROS: 0.677). The SNN provided a finite risk for MAE and accurately identified MAE in 14 of 169 "high (>80%) risk" patients (8.3%) and no MAEs in all 198 "low (<20%) risk" patients (100%).
Conclusion: ML models incrementally improved risk prediction for identifying those at risk of MAEs. The SNN has the additional advantage of providing a personalized finite risk assessment for patients. This may aid patient decision making and allow better preoperative risk assessment and resource allocation.
Keywords: Artificial intelligence; ELECTRa registry; Machine learning; Outcomes; Risk stratification; Transvenous lead extraction.
Copyright © 2022 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.