Objectives: Serum S100B allows a one-third reduction of computed tomography (CT) scans performed for mild traumatic brain injury (mTBI) patients. In this study, we evaluated the diagnostic performance of serum NF-L in the detection of intracranial lesions induced by mTBI.
Methods: One hundred seventy-nine adult mTBI patients presenting to the emergency department of Clermont-Ferrand University Hospital with a Glasgow Coma Scale (GCS) score of 14-15 were included. S100B assays were performed for clinical routine while NF-L samples were stored at -80 °C until analysis. CT scans were performed for patients with S100B levels above the decision threshold of 0.10 μg/L. Later, NF-L and S100B levels were compared to CT scan findings to evaluate the biomarkers' performances.
Results: The area under the ROC curve (AUC) evaluating the diagnostic ability in the prediction of intracranial lesions was 0.72 (95% CI; 0.58-0.87) for S100B and 0.58 (95% CI; 0.45-0.71) for NF-L, the specificities (at a threshold allowing a 100% sensitivity) were 35.7% for S100B, and 28% for NF-L (p=0.096). AUCs of NF-L and S100B for the identification of patients with neurological disorders were statistically different (p<0.001). The AUCs were 0.87 (95% CI; 0.82-0.93) for NF-L and 0.57 (95% CI; 0.48-0.66) for S100B. There was a poor correlation between NF-L and S100B, and NF-L levels were correlated to patients' age (Spearman coefficient of 0.79).
Conclusions: NF-L showed poor performances in the early management of mTBI patients. NF-L levels are strongly correlated to neurodegeneration, whether physiological, age-related, or pathological.
Keywords: NF-L; S100B; biomarker; mild traumatic brain injury; mild traumatic brain injury (mTBI); neurofilament.
© 2022 Walter de Gruyter GmbH, Berlin/Boston.