Carbon-based perovskite solar cells (C-PSCs) are the most promising photovoltaic (PV) due to their low material and manufacturing cost and superior long-term stability. This work compares the performance between gold (Au) and multi-wall carbon nanotube (MWCNT) electrodes for hole transport material (HTM)-free PSCs. Based on the obtained results, C-PSCs showed remarkable power conversion efficiency (PCE) and negligible hysteresis. Indeed, under optimized conditions, MWCNTs demonstrated superior performance as a counter electrode (CE) for HTM-free PSCs, leading to a PCE of 15.56%, which is comparable to the current state-of-the-art materials. Also, the presence of MWCNTs in the cell architecture enhances the collection and injection of holes at the perovskite/MWCNT interface and as a result, improves the external quantum efficiency (EQE) and current density because the recombination process is quenched. This improvement is confirmed by impedance spectroscopy (EIS), photoluminescence (PL), current/voltage (J-V), and EQE measurements. Moreover, MWCNTs could act as a protective layer and enhance the PSC stability. C-PSC was more stable than that of traditional PSC based on Au, which could maintain 80% of its primary PCE for long-periods of storage in moist conditions.
This journal is © The Royal Society of Chemistry.