Pyrrole and cobalt nitrate were used as nitrogen and metal sources respectively to synthesize a dinitratobis(polypyrrole)cobalt(ii) (Co(polypyrrole)2(NO3)2) adduct as the precursor of a Co-pyrrole/MPC catalyst. Pyrrole has the capability of polymerization and coordination with Co(ii). Taking this advantage, the Co(polypyrrole)2(NO3)2 coordination can form a long-chain structure with abundant and robust Co-N bonds, contributing to significantly increased catalytic sites in the product catalyst. As a result, the obtained Co-pyrrole/MPC (MPC = macroporous carbon) catalyst exhibited high ORR catalytic activity in alkaline media and excellent performance in direct borohydride fuel cell (DBFC). A peak power density up to 325 mW cm-2 was achieved at ambient condition, outperforming the commercialized Pt/XC-72 benchmark containing 28.6 wt% Pt. The construction of long-chain coordination precursor was verified playing a key role in the electrochemical improvement of Co-pyrrole/MPC catalyst in DBFC.
This journal is © The Royal Society of Chemistry.