Background: This study aims to explore the mechanism of interleukin-32 (IL-32) affecting atopic dermatitis (AD) through the Janus-activated kinase-1 (JAK1)/microRNA-155 (miR-155) axis.
Methods: In this study, skin tissue samples and blood samples from normal subjects and patients with AD, human immortalized keratinocytes (HaCaT), and PA-induced mouse models of AD were selected for expression determination of IL-32, JAK1 and miR-155. The interaction among IL-32, JAK1 and miR-155 was identified with their roles in AD analyzed through loss- and gain-of-function assays.
Results: Elevated IL-32 was detected in AD tissues and blood samples and promoted the occurrence of AD. IL-32 upregulated JAK1 expression and phosphorylation of its downstream genes, thus activating the JAK signaling pathway. JAK1 promoted the expression of miR-155. IL-32/JAK1/miR-155 axis promoted inflammation in the AD skin reconstruction model. In vivo experiments further confirmed that IL-32 promoted AD development by activating the JAK1/miR-155 axis.
Conclusion: The present study underlined that IL-32 promoted the occurrence of AD by promoting JAK1 expression to upregulate miR-155 expression.
Keywords: Atopic dermatitis; Human immortalized keratinocytes; Inflammation; Interleukin-32; Janus-activated kinase-1; Phosphorylation; Skin reconstruction model; microRNA-155.
© 2022. The Author(s).