Comparative data are virtually missing about the performance of different electro-anatomical mapping (EAM) system platforms on outflow tract (OT) premature ventricular complex (PVC) ablation outcomes with manual ablation catheters. We aimed to compare the acute success-, complication-, and long-term recurrence rates of impedance-based (IMP) and magnetic field-based (MAG) EAM platforms in manual OT PVC ablation. Single-centre, propensity score matched data of 39-39 patients ablated for OT PVCs in 2015-17 with IMP or MAG platforms were analysed. Acute success rate, peri-procedural complications, post-ablation daily PVC burden, and long-term recurrence rates were compared on intention-to-treat basis. Acute success rate was similar in the IMP and MAG group (77 vs. 82%, p = 0.78). There was a single case of femoral pseudo-aneurysm and no cardiac tamponade occurred. PVC burden fell significantly from baseline 24.0% [15.0-30.0%] to 3.3% [0.25-10.5%] (p < 0.001) post-ablation, with no difference between EAM platforms (IMP: 2.6% [0.5-12.0%] vs. MAG: 4.0% [2.0-6.5%]; p = 0.60). There was no significant difference in recurrence-free survival of the intention-to-treat cohort of the IMP and MAG groups (54 vs. 60%, p = 0.82, respectively) during 12 months of follow-up. Ablation with the aid of both impedance- and magnetic field-based EAM platforms can considerably reduce OT PVC burden and give similar acute- and long-term freedom from arrhythmia.
Keywords: Catheter ablation; Electro-anatomical mapping; Outcome; Outflow tract; Premature ventricular complexes.
© 2022. The Author(s).