Friction stir spot welding (FSSW) is one of the important variants of the friction stir welding (FSW) process. FSSW has been developed mainly for automotive applications where the different thickness sheets spot welding is essential. In the present work, different thin thickness sheets (1 mm and 2 mm) of AA6082-T6 were welded using FSSW at a constant dwell time of 3 s and different rotation speeds of 400, 600, 800, and 1000 rpm. The FSSW heat input was calculated, and the temperature cycle experience during the FSSW process was recorded. Both starting materials and produced FSSW joints were investigated by macro- and microstructural investigation, a hardness test, and a tensile shear test, and the fractured surfaces were examined using a scanning electron microscope (SEM). The macro examination showed that defect-free spot joints were produced at a wide range of rotation speeds (400-1000 rpm). The microstructural results in terms of grain refining of the stir zone (SZ) of the joints show good support for the mechanical properties of FSSW joints. It was found that the best welding condition was 600 rpm for achieving different thin sheet thicknesses spot joints with the SZ hardness of 95 ± 2 HV0.5 and a tensile shear load of 4300 ± 30 N.
Keywords: AA6082; aluminum alloys; friction stir spot welding; hardness; microstructure; tensile shear load.