There are now more than 300 000 RNA sequencing samples available, stemming from thousands of experiments capturing gene expression in organs, tissues, developmental stages, and experimental treatments for hundreds of plant species. The expression data have great value, as they can be re-analyzed by others to ask and answer questions that go beyond the aims of the study that generated the data. Because gene expression provides essential clues to where and when a gene is active, the data provide powerful tools for predicting gene function, and comparative analyses allow us to study plant evolution from a new perspective. This review describes how we can gain new knowledge from gene expression profiles, expression specificities, co-expression networks, differential gene expression, and experiment correlation. We also introduce and demonstrate databases that provide user-friendly access to these tools.
Keywords: co-expression; comparative transcriptomics; databases; differential expression; gene expression; gene function.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.