Development and Validation of Dynamic Multivariate Prediction Models of Sexual Function Recovery in Patients with Prostate Cancer Undergoing Radical Prostatectomy: Results from the MUSIC Statewide Collaborative

Eur Urol Open Sci. 2022 Apr 18:40:1-8. doi: 10.1016/j.euros.2022.03.009. eCollection 2022 Jun.

Abstract

Background: Radical prostatectomy (RP) is the most common definitive treatment for men with intermediate-risk prostate cancer and is frequently complicated by erectile dysfunction.

Objective: To develop and validate models to predict 12- and 24-month post-RP sexual function.

Design setting and participants: Using Michigan Urological Surgery Improvement Collaborative (MUSIC) registry data from 2016 to 2021, we developed dynamic, multivariate, random-forest models to predict sexual function recovery following RP. Model factors (established a priori) included baseline patient characteristics and repeated assessments of sexual satisfaction, and Expanded Prostate Cancer Index Composite 26 (EPIC-26) overall scores and sexual domain questions.

Outcome measurements and statistical analysis: We evaluated three outcomes related to sexual function: (1) the EPIC-26 sexual domain score (range 0-100); (2) the EPIC-26 sexual domain score dichotomized at ≥73 for "good" function; and (3) a dichotomized variable for erection quality at 12 and 24 months after RP. A gradient-boosting decision tree was used for the prediction models, which combines many decision trees into a single model. We evaluated the performance of our model using the root mean squared error (RMSE) and mean absolute error (MAE) for the EPIC-26 score as a continuous variable, and the area under the receiver operating characteristic curve (AUC) for the dichotomized EPIC-26 sexual domain score (SDS) and erection quality. All analyses were conducted using R v3.6.3.

Results and limitations: We identified 3983 patients at 12 months and 2494 patients at 24 months who were randomized to the derivation cohort at 12 and 24 months, respectively. Using baseline information only, our model predicted the 12-month EPIC-26 SDS with RMSE of 24 and MAE of 20. The AUC for predicting EPIC-26 SDS ≥73 (a previously published threshold) was 0.82. Our model predicted 24-month EPIC-26 SDS with RMSE of 26 and MAE of 21, and AUC for SDS ≥73 of 0.81. Inclusion of post-RP data improved the AUC to 0.91 and 0.94 at 12 and 24 months, respectively. A web tool has also been developed and is available at https://ml4lhs.shinyapps.io/askmusic_prostate_pro/.

Conclusions: Our model provides a valid way to predict sexual function recovery at 12 and 24 months after RP. With this dynamic, multivariate (multiple outcomes) model, accurate predictions can be made for decision-making and during survivorship, which may reduce decision regret.

Patient summary: Our prediction model allows patients considering prostate cancer surgery to understand their probability before and after surgery of recovering their erectile function and may reduce decision regret.

Keywords: Machine learning; Patient education; Prediction model; Prostate cancer; Sexual function.