The ability to measure biomarkers in vivo relevant to the assessment of disease progression is of great interest to the scientific and medical communities. The resolution of results obtained from current methods of measuring certain biomarkers can take several days or weeks to obtain, as they can be limited in resolution both spatially and temporally (e.g., fluid compartment microdialysis of interstitial fluid analyzed by enzyme-linked immunosorbent assay [ELISA], high-performance liquid chromatography [HPLC], or mass spectrometry); thus, their guidance of timely diagnosis and treatment is disrupted. In the present study, a unique technique for detecting and measuring peptide transmitters in vivo through the use of a capacitive immunoprobe biosensor (CI probe) is reported. The fabrication protocol and in vitro characterization of these probes are described. Measurements of sympathetic stimulation-evoked neuropeptide Y (NPY) release in vivo are provided. NPY release is correlated to the sympathetic release of norepinephrine for reference. The data demonstrate an approach for the fast and localized measurement of neuropeptides in vivo. Future applications include intraoperative real-time assessment of disease progression and minimally invasive catheter-based deployment of these probes.