Metal complexes of thiosemicarbazones derived by 2-quinolones with Cu(I), Cu(II) and Ni(II); Identification by NMR, IR, ESI mass spectra and in silico approach as potential tools against SARS-CoV-2

J Mol Struct. 2022 Oct 5:1265:133480. doi: 10.1016/j.molstruc.2022.133480. Epub 2022 Jun 9.

Abstract

Substituted thiosemicarbazones derived by 2-quinolone were synthesized to investigate their complexation capability towards Cu(I), Cu(II) and Ni(II) salts. The structure of the complexes was established by ESI, IR and NMR spectra in addition to elemental analyses. Monodetate Cu(I) quinoloyl-substituted ligands were observed, whereas Ni(II) and Cu(II) formed bidentate-thiosemicarbazone derived by 2-quinolones. Subsequently, molecular docking was used to evaluate each analog's binding affinity as well as the inhibition constant (ki) to RdRp complex of SARS-CoV-2. Docking results supported the ability of the tested complexes that potentially inhibit the RdRp of SARSCov-2 show binding energy higher than their corresponding ligands. Additionally, ADMET prediction revealed that some compounds stratify to Lipinski's rule, indicating a good oral absorption, high bioavailability good permeability, and transport via biological membranes. Therefore, these metals-based complexes are suggested to be potentially good candidates as anti-covid agents.

Keywords: 2-Quinolones; Anti-Covid agents; Bidentate; Cu(I); ESI; Molecular docking; Monodentate; NMR; Ni (II) and Cu(II) salts; Thiosemicarbazones.