Single-cell RNA sequencing trades read-depth for dimensionality, often leading to loss of critical signaling gene information that is typically present in bulk data sets. We introduce DURIAN (Deconvolution and mUltitask-Regression-based ImputAtioN), an integrative method for recovery of gene expression in single-cell data. Through systematic benchmarking, we demonstrate the accuracy, robustness and empirical convergence of DURIAN using both synthetic and published data sets. We show that use of DURIAN improves single-cell clustering, low-dimensional embedding, and recovery of intercellular signaling networks. Our study resolves several inconsistent results of cell-cell communication analysis using single-cell or bulk data independently. The method has broad application in biomarker discovery and cell signaling analysis using single-cell transcriptomics data sets.
Keywords: ADMM; LDA; cell-signaling; deconvolution; imputation; single-cell RNA-seq.
© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.