This study reports a simple one-step hydrothermal method for the preparation of a Ni(OH)2 and MnO2 intercalated rGO nanostructure as a potential supercapacitor electrode material. Having highly amorphous rGO layers with turbostratic and integrated wrinkled flower-like morphology, the as-prepared electrode material showed a high specific capacitance of 420 F g-1 and an energy density of 14.58 Wh kg-1 with 0.5 M Na2SO4 as the electrolyte in a symmetric two-electrode. With the successful intercalation of the γ-MnO2 and α-Ni(OH)2 in between the surface of the as-prepared rGO layers, the interlayer distance of the rGO nanosheets expanded to 0.87 nm. The synergistic effect of γ-MnO2, α-Ni(OH)2, and rGO exhibited the satisfying high cyclic stability with a capacitance retention of 82% even after 10 000 cycles. Thus, the as-prepared Ni(OH)2 and MnO2 intercalated rGO ternary hybrid is expected to contribute to the fabrication of a real-time high-performing supercapacitor device.
© 2022 The Authors. Published by American Chemical Society.