The current study involved exposing adult F0 Gulf killifish (Fundulus grandis) to Macondo-252 oil for 36 to 44 days and assessing the effects of this oiling on the swimming performance and morphology in two generations of progeny reared in clean water. Following exposure to oil, the F0 fish were used as broodstock to generate four lineages of F1 fish using a full-matrix mating design derived from the gametes of clean and oil-exposed parents. Later, the four lineages of F1 fish were used as broodstock to create an F2 generation of the same four lineages. We found few differences in embryonic outcome (% dead,% hatched, and% unhatched) in any of the four lineages of F1 and F2 fish. However, as adults, F1 and F2 fish derived from oil-exposed males from the F0 generation had significantly lower critical swimming speeds (Ucrit) than both the control and maternally oil-exposed lineages. Additionally, progeny of oil-exposed fish had altered body shape based on the statistical analysis of two-dimensional landmark-based geometric morphometrics. Fish from oil-exposed lineages showed increased body depth, altered spinal curvature, and changes in the upward angle of projection of the head. Both generations had a significant main effect of maternal and paternal oil exposure on shape; however, F0 paternal oil exposure explained more of the variance in shape across both generations relative to F0 maternal exposure. Our findings demonstrate that parental exposure to oil can impact the shape and aerobic swimming capacity of offspring for at least two generations after the original paternal oiling.
Keywords: Crude oil; Geometric morphometrics; Morphology; Parental exposure; Spinal deformity; Transgenerational effects.
Copyright © 2022. Published by Elsevier B.V.