Enhanced Expansion and Reduced Kiss-and-Run Events in Fusion Pores Steered by Synaptotagmin-1 C2B Domains

J Chem Theory Comput. 2022 Jul 12;18(7):4544-4554. doi: 10.1021/acs.jctc.2c00424. Epub 2022 Jun 27.

Abstract

The fusion pore controls the release of exocytotic vesicle contents through a precise orchestration of lipids from the fusing membranes and proteins. There is a major lipid reorganization during the different stages in life of the fusion pore (membrane fusion, nucleation, and expansion) that can be scrutinized thermodynamically. In this work, using umbrella sampling simulations we describe the expansion of the fusion pore. We have calculated free energy profiles to drive a nascent, just nucleated, fusion pore to its expanded configuration. We have quantified the effects on the free energy of one and two Synaptotagmin-1 C2B domains in the cytosolic space. We show that C2B domains cumulatively reduce the cost for expansion, favoring the system to evolve toward full fusion. Finally, by conducting thousands of unbiased molecular dynamics simulations, we show that C2B domains significantly decrease the probability of kiss-and-run events.

MeSH terms

  • Calcium* / metabolism
  • Exocytosis*
  • Membrane Fusion

Substances

  • Calcium