Operando and in situ techniques are becoming mandatory to study Li-ion, post Li-ion, and solid-state batteries. They are essential for monitoring the (electro)chemical and dynamic processes in the battery environment and for providing understanding at different spatial and temporal scales. While operando measurements are becoming more and more routine, scientists have to keep in mind that such experiments are not always harmless for the battery operation, especially when using synchrotron techniques. This is the case in the example described herein with Mg batteries. We show that the electrode reactivity in a InSb/organohaluminate electrolyte/Mg cell is strongly retarded during operando synchrotron X-ray absorption acquisition. Through comparison of ex situ, operando, and in situ data, we demonstrate that this effect occurred only on the samples' volumes exposed to the X-ray radiation. This study illustrates how incorrect conclusions might be drawn from operando measurements, especially when looking at new battery chemistries, and calls for extreme caution when designing and interpreting operando data.