Hydroxypropyl trimethyl ammonium chloride chitosan (HACC) was synthesized by reacting chitosan with glycidyl trimethylammonium chloride. Atomic force microscopy showed that HACC exhibited disorderly coils in dilute solution and formed a three-dimensional network. Flow, thixotropy, and dynamic viscoelasticity tests were conducted using an MCR301 rheometer. The HACC solution was a non-Newtonian pseudoplastic fluid, and the shear behavior of different concentrations (2-6 %, w/v) was evaluated by the Williamson model fitting. Furthermore, the thixotropy was highly dependent on concentration changes: the high-concentration solution structure was difficult to recover in a short time. The dynamic viscoelasticity test indicated that the viscoelasticity of the HACC solution not only exhibited a viscous behavior similar to that of a fluid, but also exhibited elastic properties of weak gel. HACC exhibited high-strength solid-like gel characteristics at high temperature.
Keywords: Cationic polysaccharides; Dynamical viscoelasticity; Flow behavior; Hydroxypropyl trimethyl ammonium chloride chitosan; Thixotropy.
Copyright © 2022. Published by Elsevier B.V.