Purpose of review: Increased risk of type 2 diabetes mellitus (T2D) among individuals with overweight or obesity is well-established; however, questions remain about the temporal dynamics of weight change (gain or loss) on the natural course of T2D in this at-risk population. Existing epidemiologic evidence is limited to studies that discretely sample and assess excess weight and T2D risk at different ages with limited follow-up, yet changes in weight may have time-varying and possibly non-linear effects on T2D risk. Predicting the impact of weight change on the risk of T2D is key to informing primary prevention. We critically review the relationship between weight change, trajectory groups (i.e., distinct weight change patterns), and T2D risk among individuals with excess weight in recently published T2D prevention randomized controlled trials (RCTs) and longitudinal cohort studies.
Recent findings: Overall, weight trajectory groups have been shown to differ by age of onset, sex, and patterns of insulin resistance or beta-cell function biomarkers. Lifestyle (diet and physical activity), pharmacological, and surgical interventions can modify an individual's weight trajectory. Adolescence is a critical etiologically relevant window during which onset of excess weight may be associated with higher risk of T2D. Changes in insulin resistance and beta-cell function biomarkers are distinct but related correlates of weight trajectory groups that evolve contemporaneously over time. These multi-trajectory markers are differentially associated with T2D risk. T2D risk may differ by the age of onset and duration of excess body weight, and the type of weight loss intervention. A better understanding of the changes in weight, insulin sensitivity, and beta-cell function as distinct but related correlates of T2D risk that evolve contemporaneously over time has important implications for designing and targeting primary prevention efforts.
Keywords: Type 2 diabetes mellitus; Weight change; Weight loss interventions; Weight trajectory.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.