Background: Primary cardiac lymphoma (PCL) and primary cardiac sarcoma (PCS) are similar in clinical presentation but differ in management and outcomes. We aim to explore the role of PET morphology and clinical characteristics in distinguishing PCL from PCS.
Methods: Pretreatment 18F-FDG PET/CT and contrast-enhanced CT were performed in PCL (n = 14) and PCS (n = 15) patients. Patient demographics, overall survival, and progression-free survival were reviewed. PET/CT morphological and metabolic features were extracted. Specifically, R_Kurtosis, a PET-morphology parameter reflecting the tumor expansion within the heart, was calculated.
Results: Compared with PCS, PCL occurred at an older age, resulted in more cardiac dysfunctions and arrhythmias, and showed higher glucometabolism (SUVmax, SUVpeak, SUVmean, MTV, and TLG). Curative treatments improved survival for PCL but not for PCS. Multivariable logistic regression identified R_Kurtosis (OR = 27.025, P = .007) and cardiac conduction disorders (OR = 37.732, P = .016) independently predictive of PCL, and classification and regression tree analysis stratified patients into three subgroups: R_Kurtosis ≥ 0.044 (probability of PCL 88.9%), R_Kurtosis < 0.044 with conduction disorders (80.0%), and R_Kurtosis < 0.044 without conduction disorders (13.3%).
Conclusion: PET-derived tumor expansion pattern (R_Kurtosis) and cardiac conduction disorders were helpful in distinguishing PCL from PCS, which might assist the clinical management.
Keywords: PET; Primary cardiac lymphoma (PCL); cardiac conduction disorders; morphology; primary cardiac sarcomas (PCS).
© 2022. The Author(s) under exclusive licence to American Society of Nuclear Cardiology.