Determining the position of ourselves or our assets has always been important to humans. Technology has helped us, from sextants to outdoor global positioning systems, but real-time indoor positioning has been a challenge. Among the various solutions, network-based positioning became an option with the arrival of 5G mobile networks. The new radio technologies, minimized end-to-end latency, specialized control protocols, and booming computation capacities at the network edge offered the opportunity to leverage the overall capabilities of the 5G network for positioning-indoors and outdoors. This paper provides an overview of network-based positioning, from the basics to advanced, state-of-the-art machine-learning-supported solutions. One of the main contributions is the detailed comparison of machine learning techniques used for network-based positioning. Since new requirements are already in place for 6G networks, our paper makes a leap towards positioning with 6G networks. In order to also highlight the practical side of the topic, application examples from different domains are presented with a special focus on industrial and vehicular scenarios.
Keywords: 5G; 6G; asset tracking; indoor positioning; machine learning; network-based positioning; positioning techniques; positioning use cases.