The authors hypothesize that particularly severely compromised and asphyctic term infants in need of resuscitation may benefit from delayed umbilical cord clamping (after several minutes). Although evidence is sparse, the underlying pathophysiological mechanisms support this assumption. For this review the authors have analyzed the available research. Based on these data they conclude that it may be unfavorable to immediately clamp the cord of asphyctic newborns (e.g., after shoulder dystocia) although recommended in current guidelines to provide quick neonatological support. Compression of the umbilical cord or thorax obstructs venous flow to the fetus more than arterial flow to the placenta. The fetus is consequently cut off from a supply of oxygenated, venous blood. This may cause not only hypoxemia and consecutive hypoxia during delivery but possibly also hypovolemia. Immediate cord clamping may aggravate the situation of the already compromised newborn, particularly if the cord is cut before the lungs are ventilated. By contrast, delayed cord clamping leads to fetoplacental transfusion of oxygenated venous blood, which may buffer an existing acidosis. Furthermore, it may enhance blood volume by up to 20%, leading to higher levels of various blood components, such as red and white blood cells, thrombocytes, mesenchymal stem cells, immunoglobulins, and iron. In addition, the resulting increase in pulmonary perfusion may compensate for an existing hypoxemia or hypoxia. Early cord clamping before lung perfusion reduces the preload of the left ventricle and hinders the establishment of sufficient circulation. Animal models and clinical trials support this opinion. The authors raise the question whether it would be better to resuscitate compromised newborns with intact umbilical cords. Obstetric and neonatal teams need to work even closer together to improve neonatal outcomes.
Keywords: asphyxia; delayed umbilical cord clamping; neonatal hypoxemia; neonatal hypoxia; resuscitation.
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. ( https://creativecommons.org/licenses/by-nc-nd/4.0/ ).