Reverse-engineering method for XPCS studies of non-equilibrium dynamics

IUCrJ. 2022 May 28;9(Pt 4):439-448. doi: 10.1107/S2052252522004560. eCollection 2022 Jul 1.

Abstract

X-ray photon correlation spectroscopy (XPCS) is a powerful tool in the investigation of dynamics covering a broad time and length scale. It has been widely used to probe dynamics for systems in both equilibrium and non-equilibrium states; in particular, for systems undergoing a phase transition where the structural growth kinetics and the microscopic dynamics are strongly intertwined. The resulting time-dependent dynamic behavior can be described using the two-time correlation function (TTC), which, however, often contains more interesting features than the component along the diagonal, and cannot be easily interpreted via the classical simulation methods. Here, a reverse engineering (RE) approach is proposed based on particle-based heuristic simulations. This approach is applied to an XPCS measurement on a protein solution undergoing a liquid-liquid phase separation. It is demonstrated that the rich features of experimental TTCs can be well connected with the key control parameters including size distribution, concentration, viscosity and mobility of domains. The dynamic information obtained from this RE analysis goes beyond the existing theory. The RE approach established in this work is applicable for other processes such as film growth, coarsening or evolving systems.

Keywords: X-ray photon correlation spectroscopy; dynamical simulations; liquid–liquid phase separation; non-equilibrium dynamics; phase transitions; proteins; reverse engineering; small-angle X-ray spectroscopy.

Grants and funding

Funding for this research was provided by: Deutsche Forschungsgemeinschaft; Bundesministerium für Bildung und Forschung (award No. 05K19PS1 to Christian Gutt; award No. 05K20PSA to Christian Gutt; award No. 05K20VTA to Fajun Zhang and Frank Schreiber); Studienstiftung des Deutschen Volkes (scholarship to Anastasia Ragulskaya); Alexander von Humboldt-Stiftung (scholarship to Nafisa Begam).