COVID-19 mRNA vaccines effectively reduce incidence of severe disease, hospitalisation and death. The biodistribution and pharmacokinetics of the mRNA-containing lipid nanoparticles (LNPs) in these vaccines are unknown in humans. In this study, we used qPCR to track circulating mRNA in blood at different time-points after BNT162b2 vaccination in a small cohort of healthy individuals. We found that vaccine-associated synthetic mRNA persists in systemic circulation for at least 2 weeks. Furthermore, we used transmission electron microscopy (TEM) to investigate SARS-CoV-2 spike protein expression in human leukemic cells and in primary mononuclear blood cells treated in vitro with the BNT162b2 vaccine. TEM revealed morphological changes suggestive of LNP uptake, but only a small fraction of K562 leukemic cells presented spike-like structures at the cell surface, suggesting reduced levels of expression for these specific phenotypes.
Keywords: COVID-19; biodistribution; lipid nanoparticles; mRNA vaccine; spike protein.