Predicting incidence of hepatitis E using machine learning in Jiangsu Province, China

Epidemiol Infect. 2022 Jul 28:150:e149. doi: 10.1017/S0950268822001303.

Abstract

Hepatitis E is an increasingly serious worldwide public health problem that has attracted extensive attention. It is necessary to accurately predict the incidence of hepatitis E to better plan ahead for future medical care. In this study, we developed a Bi-LSTM model that incorporated meteorological factors to predict the prevalence of hepatitis E. The hepatitis E data used in this study are collected from January 2005 to March 2017 by Jiangsu Provincial Center for Disease Control and Prevention. ARIMA, GBDT, SVM, LSTM and Bi-LSTM models are adopted in this study. The data from January 2009 to September 2014 are used as the training set to fit models, and data from October 2014 to March 2017 are used as the testing set to evaluate the predicting accuracy of different models. Selecting models and evaluating the effectiveness of the models are based on mean absolute per cent error (MAPE), root mean square error (RMSE) and mean absolute error (MAE). A total of 44 923 cases of hepatitis E are detected in Jiangsu Province from January 2005 to March 2017. The average monthly incidence rate is 0.35 per 100 000 persons in Jiangsu Province. Incorporating meteorological factors of temperature, water vapour pressure, and rainfall as a combination into the Bi-LSTM Model achieved the state-of-the-art performance in predicting the monthly incidence of hepatitis E, in which RMSE is 0.044, MAPE is 11.88%, and MAE is 0.0377. The Bi-LSTM model with the meteorological factors of temperature, water vapour pressure, and rainfall can fully extract the linear and non-linear information in the hepatitis E incidence data, and has significantly improved the interpretability, learning ability, generalisability and prediction accuracy.

Keywords: Forecast; hepatitis E; mathematical model.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China / epidemiology
  • Hepatitis E* / epidemiology
  • Humans
  • Incidence
  • Machine Learning
  • Prevalence