Interindividual variation is important in the response to metformin as the first-line therapy for type-2 diabetes mellitus (T2DM). Considering that OCT1 and MATE1 transporters determine the metformin pharmacokinetics, this study aimed to investigate the influence of SLC22A1 and SLC47A1 variants on the steady-state pharmacokinetics of metformin and the glycemic response. This research used the prospective-cohort study design for 81 patients with T2DM who received 500 mg metformin twice a day from six primary healthcare centers. SLC22A1 rs628031 A>G (Met408Val) and Met420del genetic variants in OCT1 as well as SLC47A1 rs2289669 G>A genetic variant in MATE1 were examined through the PCR-RFLP method. The bioanalysis of plasma metformin was performed in the validated reversed-phase HPLC-UV detector. The metformin steady-state concentration was measured for the trough concentration (Cssmin) and peak concentration (Cssmax). The pharmacodynamic parameters of metformin use were the fasting blood glucose (FBG) and glycated albumin (GA). Only SLC22A1 Met420del alongside estimated-glomerular filtration rate (eGFR) affected both Cssmax and Cssmin with an extremely weak correlation. Meanwhile, SLC47A1 rs2289669 and FBG were correlated. This study also found that there was no correlation between the three SNPs studied and GA, so only eGFR and Cssmax influenced GA. The average Cssmax in patients with the G allele of SLC22A1 Met408Val, reaching 1.35-fold higher than those with the A allele, requires further studies with regard to metformin safe dose in order to avoid exceeding the recommended therapeutic range.