Genetic spectrum and founder effect of non-dystrophic myotonia: a Japanese case series study

J Neurol. 2022 Dec;269(12):6406-6415. doi: 10.1007/s00415-022-11305-6. Epub 2022 Jul 30.

Abstract

Non-dystrophic myotonias (NDM) are rare skeletal muscle channelopathies, mainly linked to two voltage-gated ion channel genes, CLCN1 and SCN4A. The aim of this study is to identify the clinical and genetic features of patients with NDM in Japan. We collected a Japanese nationwide case series of patients with clinical diagnosis of NDM (1999-2021). Among 71 out of 88 pedigrees, using Sanger and next-generation sequencing targeting both CLCN1 and SCN4A genes, variants classified as pathogenic/likely pathogenic/unknown significance were detected from CLCN1 (31 probands), SCN4A (36 probands), or both genes (4 probands), and 11 of them were novel. Pedigrees carrying mono-allelic CLCN1 variants were more commonly seen than that with bi-allelic/double variants (24:7). Compared to patients with CLCN1 variants, patients harboring SCN4A variants showed younger onset age (5.64 ± 4.70 years vs. 9.23 ± 5.21 years), fewer warm-up phenomenon, but more paramyotonia, hyperCKemia, transient muscle weakness, and cold-induced myotonia. Haplotype analysis verified founder effects of the hot spot variants in both CLCN1 (p.T539A) and SCN4A (p.T1313M). This study reveals variants in CLCN1 and SCN4A from 80.7% of our case series, extending genetic spectrum of NDM, and would further our understanding of clinical similarity/diversity between CLCN1- and SCN4A-related NDM, as well as the genetic racial differences.

Keywords: CLCN1; Founder effect; Next-generation sequencing; Non-dystrophic myotonia; SCN4A.

MeSH terms

  • Child
  • Child, Preschool
  • Chloride Channels / genetics
  • Founder Effect
  • Humans
  • Infant
  • Japan
  • Mutation / genetics
  • Myotonia Congenita* / genetics
  • Myotonia* / genetics
  • NAV1.4 Voltage-Gated Sodium Channel / genetics

Substances

  • NAV1.4 Voltage-Gated Sodium Channel
  • Chloride Channels
  • SCN4A protein, human