Artificial selection methods from evolutionary computing show promise for directed evolution of microbes

Elife. 2022 Aug 2:11:e79665. doi: 10.7554/eLife.79665.

Abstract

Directed microbial evolution harnesses evolutionary processes in the laboratory to construct microorganisms with enhanced or novel functional traits. Attempting to direct evolutionary processes for applied goals is fundamental to evolutionary computation, which harnesses the principles of Darwinian evolution as a general-purpose search engine for solutions to challenging computational problems. Despite their overlapping approaches, artificial selection methods from evolutionary computing are not commonly applied to living systems in the laboratory. In this work, we ask whether parent selection algorithms-procedures for choosing promising progenitors-from evolutionary computation might be useful for directing the evolution of microbial populations when selecting for multiple functional traits. To do so, we introduce an agent-based model of directed microbial evolution, which we used to evaluate how well three selection algorithms from evolutionary computing (tournament selection, lexicase selection, and non-dominated elite selection) performed relative to methods commonly used in the laboratory (elite and top 10% selection). We found that multiobjective selection techniques from evolutionary computing (lexicase and non-dominated elite) generally outperformed the commonly used directed evolution approaches when selecting for multiple traits of interest. Our results motivate ongoing work transferring these multiobjective selection procedures into the laboratory and a continued evaluation of more sophisticated artificial selection methods.

Keywords: agent-based modeling; artificial selection; computational biology; digital organisms; directed evolution; evolutionary biology; evolutionary computing; none; systems biology.

Plain language summary

Humans have long known how to co-opt evolutionary processes for their own benefit. Carefully choosing which individuals to breed so that beneficial traits would take hold, they have domesticated dogs, wheat, cows and many other species to fulfil their needs. Biologists have recently refined these ‘artificial selection’ approaches to focus on microorganisms. The hope is to obtain microbes equipped with desirable features, such as the ability to degrade plastic or to produce valuable molecules. However, existing ways of using artificial selection on microbes are limited and sometimes not effective. Computer scientists have also harnessed evolutionary principles for their own purposes, developing highly effective artificial selection protocols that are used to find solutions to challenging computational problems. Yet because of limited communication between the two fields, sophisticated selection protocols honed over decades in evolutionary computing have yet to be evaluated for use in biological populations. In their work, Lalejini et al. compared popular artificial selection protocols developed for either evolutionary computing or work with microorganisms. Two computing selection methods showed promise for improving directed evolution in the laboratory. Crucially, these selection protocols differed from conventionally used methods by selecting for both diversity and performance, rather than performance alone. These promising approaches are now being tested in the laboratory, with potentially far-reaching benefits for medical, biotech, and agricultural applications. While evolutionary computing owes its origins to our understanding of biological processes, it has much to offer in return to help us harness those same mechanisms. The results by Lalejini et al. help to bridge the gap between computational and biological communities who could both benefit from increased collaboration.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Biological Evolution*
  • Phenotype
  • Search Engine

Grants and funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.