This study evaluated the epidermis mucosal capacity of goldfish (Carassius auratus) during different stages of reproductive development in both females and males. In this regard, the activity of mucolytic immune enzymes, i.e., lysozyme, complement and peroxidase, as well as the activity of alkaline phosphatase (ALP) were evaluated. There were five stages for females i.e., immature (f1), cortical alveoli (f2), early and late-vitellogenesis (vtg) (f3 and f4) and ripe (f5); as well as two stages for males spermatogenesis (m1) and spermiation (m2). Some stages were also examined for the mucosal antimicrobial activity against specific pathogens. The results showed that the mucosal lysozyme activity increased significantly during vitellogenesis (P < 0.05), but no lysozyme activity was detected in plasma. On the contrary, the complement activity was only observed in female plasma, and it was significantly higher at f3 compared to the other developmental stages. Both the plasma and mucosal ALP and peroxidase activities showed a significant increase by female reproductive development with the highest amounts at f4. Contrary to the female, no significant changes were observed in plasma and mucosal immune agents and biochemistry of the male. The f5-staged goldfish showed the highest antimicrobial activities against Gram-positive bacteria, i.e., Streptococcus faecium, Staphylococcus aureus and Micrococcus luteus (P < 0.05). Our results also represented the up-regulation of lysozyme (c-lys) gene expression by effects of female maturational development in ovary, liver and skin, while male goldfish showed no significant changes in c-lys expression. Moreover, there were positive correlations between c-lys expression, mucosal lysozyme activity and calcium levels in females (P < 0.01). Overall, our findings revealed that vtg process improves mucosal innate immunity that leads to activate antimicrobial components at spawning season.
Keywords: Complement; Fish pathogens; Immune-related gene; Mucolytic enzyme; Surface epithelium.
Copyright © 2022. Published by Elsevier Ltd.