The hematopoietic system uses several, yet undiscovered, factors to adapt to stresses such as chemotherapy, infections, or bleeding. Serotonin is commonly known as a neurotransmitter but is also produced and used in peripheral organs. In particular, we have shown that serotonin synthesized in the bone marrow is necessary for erythroid progenitors' survival and proliferation. Serotonin levels can be increased by FDA approved antidepressants called selective serotonin reuptake inhibitors (SSRI). In this work, we report a previously unknown role of SSRI in the recovery of cytopenia, after autologous hematopoietic stem cell transplantation in patients and after sub-lethal irradiation in mice. We also observed an unexpected cooperation between SSRI and G-CSF on the improvement of the 3 hematopoietic lineages. Of note, SSRI do not seem to affect blood cells production in the absence of stress-induced hematopoiesis. We propose that the serotonergic system could be a valuable therapeutic target in stress-induced cytopenia, especially as a rescue after radiation or chemotherapy.
Keywords: G-CSF; antidepressants; autologous hematopoietic stem cell transplantation; chemotherapy; cytopenia; serotonin.
© The Author(s) 2022. Published by Oxford University Press.