Fe3O4 nanoparticles with average sizes of 3-8 nm were in-situ grown and self-assembled as homogeneous clusters on reduced graphene oxide (RGO) via coprecipitation with some additives, where RGO sheets were expanded from restacking and an increased surface area was obtained. The crystallization, purity and growth evolution of as-prepared Fe3O4/RGO nanocomposites were examined and discussed. Supercapacitor performance was investigated in a series of electrochemical tests and compared with pure Fe3O4. In 1 M KOH electrolyte, a high specific capacitance of 317.4 F g-1 at current density of 0.5 A g-1 was achieved, with the cycling stability remaining at 86.9% after 5500 cycles. The improved electrochemical properties of Fe3O4/RGO nanocomposites can be attributed to high electron transport, increased interfaces and positive synergistic effects between Fe3O4 and RGO.
Keywords: coprecipitation; electrochemistry; graphene; magnetite; supercapacitors.