Background: Inflammatory bowel disease (IBD) involves chronic T cell-mediated inflammatory responses. Vedolizumab (VDZ), a monoclonal antibody against α4β7 integrin, inhibits lymphocyte extravasation into intestinal mucosae and is effective in ulcerative colitis (UC) and Crohn's disease (CD).
Aim: We sought to identify immune cell phenotypic and gene expression signatures that related to response to VDZ.
Methods: Peripheral blood (PBMC) and lamina propria mononuclear cells (LPMCs) were analyzed by flow cytometry and Cytofkit. Sorted CD4 + memory (Tmem) or regulatory T (Treg) cells from PBMC and LPMC were analyzed by RNA sequencing (RNA-seq). Clinical response (≥2-point drop in partial Mayo scores [UC] or Harvey-Bradshaw index [CD]) was assessed 14 to 22 weeks after VDZ initiation. Machine-learning models were used to infer combinatorial traits that predicted response to VDZ.
Results: Seventy-one patients were enrolled: 37 received VDZ and 21 patients remained on VDZ >2 years. Fourteen of 37 patients (38%; 8 UC, 6 CD) responded to VDZ. Immune cell phenotypes and CD4 + Tmem and Treg transcriptional behaviors were most divergent between the ileum and colon, irrespective of IBD subtype or inflammation status. Vedolizumab treatment had the greatest impact on Treg metabolic pathways, and response was associated with increased expression of genes involved in oxidative phosphorylation. The strongest clinical predictor of VDZ efficacy was concurrent use of thiopurines. Mucosal tissues offered the greatest number of response-predictive biomarkers, whereas PBMC Treg-expressed genes were the best predictors in combinatorial models of response.
Conclusions: Mucosal and peripheral blood immune cell phenotypes and transcriptional profiles can inform VDZ efficacy and inform new opportunities for combination therapies.
Keywords: Crohn’s disease; biomarkers; inflammatory bowel disease; memory T cells; ulcerative colitis.
Vedolizumab (VDZ) is effective in the treatment of IBD. Immunophenotyping and RNAseq of T cells were used to inform its mechanism of action. Changes in T regulatory cells in the periphery and mucosa have the greatest relationship to VDZ response.
© 2022 Crohn’s & Colitis Foundation. Published by Oxford University Press on behalf of Crohn’s & Colitis Foundation.