Integrating Global Citizen Science Platforms to Enable Next-Generation Surveillance of Invasive and Vector Mosquitoes

Insects. 2022 Jul 27;13(8):675. doi: 10.3390/insects13080675.

Abstract

Mosquito-borne diseases continue to ravage humankind with >700 million infections and nearly one million deaths every year. Yet only a small percentage of the >3500 mosquito species transmit diseases, necessitating both extensive surveillance and precise identification. Unfortunately, such efforts are costly, time-consuming, and require entomological expertise. As envisioned by the Global Mosquito Alert Consortium, citizen science can provide a scalable solution. However, disparate data standards across existing platforms have thus far precluded truly global integration. Here, utilizing Open Geospatial Consortium standards, we harmonized four data streams from three established mobile apps—Mosquito Alert, iNaturalist, and GLOBE Observer’s Mosquito Habitat Mapper and Land Cover—to facilitate interoperability and utility for researchers, mosquito control personnel, and policymakers. We also launched coordinated media campaigns that generated unprecedented numbers and types of observations, including successfully capturing the first images of targeted invasive and vector species. Additionally, we leveraged pooled image data to develop a toolset of artificial intelligence algorithms for future deployment in taxonomic and anatomical identification. Ultimately, by harnessing the combined powers of citizen science and artificial intelligence, we establish a next-generation surveillance framework to serve as a united front to combat the ongoing threat of mosquito-borne diseases worldwide.

Keywords: artificial intelligence; citizen science; computer vision; geographic information systems; invasive species; machine learning; mosquito monitoring; smartphone; vector surveillance; vector-borne disease.