Background: Coordination between the thalamus and cortex is necessary for efficient processing of sensory information and appears disrupted in schizophrenia. The significance of this disrupted coordination (i.e. thalamocortical dysconnectivity) to the symptoms and cognitive deficits of schizophrenia is unclear. It is also unknown whether similar dysconnectivity is observed in other forms of psychotic psychopathology and associated with familial risk for psychosis. Here we examine the relevance of thalamocortical connectivity to the clinical symptoms and cognition of patients with psychotic psychopathology, their first-degree biological relatives, and a group of healthy controls.
Method: Patients with a schizophrenia-spectrum diagnosis (N = 100) or bipolar disorder with a history of psychosis (N = 33), their first-degree relatives (N = 73), and a group of healthy controls (N = 43) underwent resting functional MRI in addition to clinical and cognitive assessments as part of the Psychosis Human Connectome Project. A bilateral mediodorsal thalamus seed-based analysis was used to measure thalamocortical connectivity and test for group differences, as well as associations with symptomatology and cognition.
Results: Reduced connectivity from mediodorsal thalamus to insular, orbitofrontal, and cerebellar regions was seen in schizophrenia. Across groups, greater symptomatology was related to less thalamocortical connectivity to the left middle frontal gyrus, anterior cingulate, right insula, and cerebellum. Poorer cognition was related to less thalamocortical connectivity to bilateral insula. Analyses revealed similar patterns of dysconnectivity across patient groups and their relatives.
Conclusions: Reduced thalamo-prefrontal-cerebellar and thalamo-insular connectivity may contribute to clinical symptomatology and cognitive deficits in patients with psychosis as well as individuals with familial risk for psychotic psychopathology.
Keywords: Cognition; fMRI; psychosis; symptoms; thalamocortical connectivity.