The exploration of nanomaterials is beneficial for the development of nanomedicine and human medical treatment. Metal-phenolic networks (MPNs) have been introduced as a nanoplatform for versatile functional hybrid nanomaterials and have attracted extensive attention due to their simple preparation, excellent properties and promising medical application prospects. This review presents an overview of recent synthesis methods for MPNs, their unique biomedical properties and the research progress in their application in disease detection and treatment. First, the synthesis methods of MPNs are summarised, and then the advantages and applicability of each assembly method are emphasised. The various functions exhibited by MPNs in biomedical applications are then introduced. Finally, the latest research progress in MPN-based nanoplatforms in the biomedical field is discussed, and their future research and application are investigated.