Isolated, seasonal wetlands within agricultural landscapes are important ecosystems. However, they are currently experiencing direct and indirect effects of agricultural management surrounding them. Because wetlands provide important ecosystem services, it is crucial to determine how these factors affect ecological communities. Here, we studied the long-term effects of land-use intensification, cattle grazing, prescribed fires, and their interactions on wetland plant diversity, community dynamics, and functional diversity. To do this, we used vegetation and trait data from a 14-year-old experiment on 40 seasonal wetlands located within seminatural and intensively managed pastures in Florida. These wetlands were allocated different grazing and prescribed fire treatments (grazed vs. ungrazed, burned vs. unburned). Our results showed that wetlands within intensively managed pastures have lower native plant diversity, floristic quality, evenness, and higher nonnative species diversity and exhibited the most resource-acquisitive traits. Wetlands embedded in intensively managed pastures were also characterized by lower species turnover over time. We found that 14 years of cattle exclusion reduced species diversity in both pasture management intensities and had no effect on floristic quality. Fenced wetlands exhibited lower functional diversity and experienced a higher rate of community change, both due to an increase in tall, clonal, and palatable grasses. The effects of prescribed fires were often dependent on grazing treatment. For instance, prescribed fires increased functional diversity in fenced wetlands but not in grazed wetlands. Our study suggests that cattle exclusion and prescribed fires are not enough to restore wetlands in intensively managed pastures and further highlights the importance of not converting seminatural pastures to intensively managed pastures. Our study also suggests that grazing levels applied in seminatural pastures maintained high plant diversity and prevented tree and shrub encroachment and that in the absence of grazing, prescribed fire became crucial to maintaining higher species evenness.
Keywords: coefficient of conservatism; functional dispersion; long-term experiment; management intensification; nonnative species; plant diversity; plant traits.
© 2022 Archbold Biological Station. Ecological Applications published by Wiley Periodicals LLC on behalf of The Ecological Society of America.