Identification of Children's Tuberous Sclerosis Complex with Multiple-contrast MRI and 3D Convolutional Network

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul:2022:2924-2927. doi: 10.1109/EMBC48229.2022.9871037.

Abstract

Identifying rare tuberous sclerosis complex (TSC) children is valuable and crucial. Magnetic resonance imaging (MRI) is used for rare TSC diagnoses. In this work, T2w and FLAIR were combined as a new modality named FLAIR3 to maximize the contrast between TSC lesions and normal-appearing brain tissues. After that, for the first time, we propose to use two different 3D CNN combined with late fusion strategies to diagnose TSC. A total of 520 children were enrolled in the study, including 260 health and 260 TSC children. The experiments had shown that the FLAIR3 could effectively improve the conspicuity of TSC lesions and classification performance. And the results showed the proposed late fusion method can improve the classification performance and achieve the state-of-the-art performance of the AUC of 0.994 and the accuracy of 0.971, which could be treated as an effective computer-aided diagnostic tool to help clinical radiologists diagnose TSC children. Clinical Relevance- Our deep learning method can be a non-invasive, efficient, and reliable way to help clinical radiologists to identify TSC patients. FLAIR3 can provide clinicians with a new modality to accurately localize TSC lesions in TSC patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Child
  • Cytosol
  • Humans
  • Magnetic Resonance Imaging
  • Tuberous Sclerosis* / diagnostic imaging