Comparative analyses utilizing publicly available big data have the potential to generate novel hypotheses and knowledge. However, this approach is underutilized in the realm of cancer research, particularly for prostate cancer. While the general progression of prostate cancer is now well understood, how individual cell types transition from healthy, to pre-cancerous, to cancerous cell types, remains to be further elucidated. To address this, we re-analyzed two publicly available single-cell RNA-seq datasets of prostate cancer and benign prostate hyperplasia cell types. The differential expression analysis of 15,505 epithelial cell profiles across 18,638 genes revealed 791 genes that were up regulated in prostate cancer epithelial cells. Here we report six markers that show significant upregulation in prostate cancer cells relative to BPH epithelial cells: HPN (5.62X), RAC3 (3.51X), CD24 (2.18X), HOXC6 (1.77X), AGR2 (1.71X), and IGFBP2 (1.28X). In particular, the significant differential expression of AGR2 further supports its clinical relevance in supplementing prostate-specific antigen screening for detecting prostate cancer. These findings have the potential to further advance our knowledge of genes governing the development of cancer in prostate epithelial cells. Clinical Relevance- Our results establish the importance of 6 prostate cancer markers (HPN, RAC3, CD24, HOXC6, AGR2, and IGFBP3) in distinguishing between prostate cancer epithelial cells and benign prostate hyperplasia epithelial cells.