Measurement of corneal biomechanical properties in diabetes mellitus using the Corvis ST

Medicine (Baltimore). 2022 Sep 9;101(36):e30248. doi: 10.1097/MD.0000000000030248.

Abstract

We sought to assess changes in corneal biomechanical parameters in patients with diabetes mellitus (DM) in comparison with those among healthy controls using Corvis ST (CST). The study group included 209 eyes from healthy control subjects and 33 eyes from diabetic subjects, respectively. Following an ophthalmological examination, measurements with CST were taken. Additionally, hemoglobin A1c and blood glucose values were collected. Results were then compared to those of the control group after adjusting for potential confounding factors, including age-, intraocular pressure (IOP)-, central corneal thickness (CCT)-, spherical equivalent (SE)- and axial length (AL). After adjusting for potential confounding factors, including the age, IOP, CCT, SE, and AL, patients with DM presented significantly lower whole-eye movement (WEM) (ms) values than patients without DM (21.71 ± 0.84 vs. 22.15 ± 0.64 ms; P < .001). There was a significant and negative correlation between WEM (ms) and hemoglobin A1c in DM patients (r = -0.733; P = .001). In univariate and multivariate general linear mixed model (GLMM) analyses, IOP (P < .001 and P < .001, respectively) and the presence of DM (P = .001 and P < .001, respectively) significantly affected WEM (ms). In DM, significant changes in corneal biomechanical properties were detectable. The DM group showed significantly less deformable cornea and sclera than did the normal controls, even after adjusting for age, IOP, CCT, SE, and AL. These findings may cause misinterpretation of IOP measurements in diabetic patients. Therefore, the measurement of corneal biomechanics should be taken into consideration in clinical practice.

MeSH terms

  • Cornea
  • Corneal Pachymetry
  • Diabetes Mellitus*
  • Glycated Hemoglobin
  • Humans
  • Tonometry, Ocular* / methods

Substances

  • Glycated Hemoglobin A