Antifouling and antimicrobial cobaltocenium-containing metallopolymer double-network hydrogels

Biomater Transl. 2022 Jun 28;3(2):162-171. doi: 10.12336/biomatertransl.2022.02.008. eCollection 2022.

Abstract

Compared with single-network hydrogels, double-network hydrogels offer higher mechanical strength and toughness. Integrating useful functions into double-network hydrogels can expand the portfolios of the hydrogels. We report the preparation of double-network metallopolymer hydrogels with remarkable hydration, antifouling, and antimicrobial properties. These cationic hydrogels are composed of a first network of cationic cobaltocenium polyelectrolytes and a second network of polyacrylamide, all prepared via radical polymerization. Antibiotics were further installed into the hydrogels via ion-complexation with metal cations. These hydrogels exhibited significantly enhanced hydration, compared with polyacrylamide-based hydrogels, while featuring robust mechanical strength. Cationic metallopolymer hydrogels exhibited strong antifouling against oppositely charged proteins. These antibiotic-loaded hydrogels demonstrated a synergistic effect on the inhibition of bacterial growth and antifouling of bacteria, as a result of the unique ion complexation of cobaltocenium cations.

Keywords: antimicrobial; cobaltocenium; double network hydrogel; metallopolymer.