Abscisic acid modulates neighbor proximity-induced leaf hyponasty in Arabidopsis

Plant Physiol. 2023 Jan 2;191(1):542-557. doi: 10.1093/plphys/kiac447.

Abstract

Leaves of shade-avoiding plants such as Arabidopsis (Arabidopsis thaliana) change their growth pattern and position in response to low red to far-red ratios (LRFRs) encountered in dense plant communities. Under LRFR, transcription factors of the phytochrome-interacting factor (PIF) family are derepressed. PIFs induce auxin production, which is required for promoting leaf hyponasty, thereby favoring access to unfiltered sunlight. Abscisic acid (ABA) has also been implicated in the control of leaf hyponasty, with gene expression patterns suggesting that LRFR regulates the ABA response. Here, we show that LRFR leads to a rapid increase in ABA levels in leaves. Changes in ABA levels depend on PIFs, which regulate the expression of genes encoding isoforms of the enzyme catalyzing a rate-limiting step in ABA biosynthesis. Interestingly, ABA biosynthesis and signaling mutants have more erect leaves than wild-type Arabidopsis under white light but respond less to LRFR. Consistent with this, ABA application decreases leaf angle under white light; however, this response is inhibited under LRFR. Tissue-specific interference with ABA signaling indicates that an ABA response is required in different cell types for LRFR-induced hyponasty. Collectively, our data indicate that LRFR triggers rapid PIF-mediated ABA production. ABA plays a different role in controlling hyponasty under white light than under LRFR. Moreover, ABA exerts its activity in multiple cell types to control leaf position.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abscisic Acid / metabolism
  • Abscisic Acid / pharmacology
  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / metabolism
  • Gene Expression Regulation, Plant
  • Phytochrome* / metabolism
  • Plant Leaves / genetics
  • Plant Leaves / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Abscisic Acid
  • Arabidopsis Proteins
  • Transcription Factors
  • Phytochrome